
Sequence 4.3 – Basic blocks

P. de Oliveira Castro S. Tardieu

1



Code generation

• In general, IR code generation works one function at a time.
• Functions are further split into basic blocks.

A basic block is a block of code that:

• runs sequentially;
• has only one entry point at the top;
• terminates with one of those three alternatives:

• a branch to another block;
• a return from the function;
• a conditional branch to several blocks.

At the beginning of the function, a block (the entry) groups all local
variable creations.

2



Example of if/then/else

An if_result temporary variable is introduced by the compiler to
hold the result of the if/then/else expression.
let function f(a: int): int =

let var b := if a > 0 then 1 else -1 in b * 10 end
in ... end

true false

a > 0?

create b variable; create if_result variable

if_result := -1

b := if_result; return b*10

if_result := 1

3



Example of while loop

// pow2 computes the smallest power of 2 >= limit
let function pow2(limit: int): int =

let var r := 1 in while r < limit do r := r * 2; r end
in ... end

truefalse

r < limit?

create r variable

r := 1

r := r * 2return r

4



Example of for loop

let function fact(n: int): int =
let var r := 1 in for i := 2 to n do r := r * i; r end

in ... end

truefalse

i <= 5?

create r variable; create i variable

r := 1; i := 2

r := r * i; i := i + 1return a

5



Tools at our disposal

LLVM, which we use as a backend in our Tiger compiler, offers
several tools to manipulate basic blocks:

• a function to create a new local variable (we will use this to
create new variables in the entry block);

• a function to create a new basic block (with an optional label,
useful for debugging);

• a function to set the insertion point of the generated
instructions at the end of a given basic block;

• functions to generate branches to exit a basic block.

6



Control flow is lowered to branches and labels (1/2)

let var a := 0 in print_int(if a then 1 else 2) end

compiles to,
entry:

%a = alloca i32 ; allocate variable a
%if_result = alloca i32 ; allocate temporary
br %body

body:
store i32 0, i32* %a ; var a := 0

%0 = load i32, i32* %a
%1 = icmp ne i32 %0, 0 ; if a (is a <> 0?)

br i1 %1, label %if_then, label %if_else

7



Control flow (2/2)

let var a := 0 in print_int(if a then 1 else 2) end

compiles to,
[...]
if_then:

store i32 1, i32* %if_result ; then, store if result 1
br label %if_end

if_else:
store i32 2, i32* %if_result ; else, store if result 2
br label %if_end

if_end:
%2 = load i32, i32* %if_result ; read if result
call void @__print_int(i32 %2) ; print if result
ret

8



What about loops?

Question: How would you write the following program in LLVM IR?
let var a := 10 in while a do (a := a - 1; print_int(a)) end

9



Answer

entry:
%a = alloca i32
br %body

body:
store i32 10, i32* %a ; var a := 10
br label %while_test ; jump to %while_test

while_test:
%0 = load i32, i32* %a ; read a
%1 = icmp ne i32 %0, 0 ; is *a zero?
br i1 %1, label %while_body, label %while_end

while_body:
%2 = load i32, i32* %a ; read a
%3 = sub i32 %2, 1 ; *a - 1
store i32 %3, i32* %a ; write (*a - 1) to a
%4 = load i32, i32* %a ; read a
call void @__print_int(i32 %4) ; print *a
br label %while_test ; loop back to test

while_end: 10



Conclusion

• Code is generated one function at a time.
• For every function, we generate basic blocks.
• Every basic block as a unique entry point, and a unique exit

point (return from function, unconditional jump to another
block, conditional jump towards several blocks).

• Local variables are declared using alloca in the first basic
block (entry block).

• Local variables are accessed through store and load
operations.

• The mem2reg optimization pass will remove all redundant
alloca/store/load operations.

11


