UNIVERSITE DE @Wé TELECOM
VERSAILLES ww» ParisTech

ST-QUENTIN-EN-YVELINES

Kl =1]
universite paris-sAcLAY -gm'

Sequence 4.3 — Basic blocks

P. de Oliveira Castro S. Tardieu

Code generation

= In general, IR code generation works one function at a time.
= Functions are further split into basic blocks.

A basic block is a block of code that:

= runs sequentially;
= has only one entry point at the top;

= terminates with one of those three alternatives:
= a branch to another block;
= 3 return from the function;
= a conditional branch to several blocks.

At the beginning of the function, a block (the entry) groups all local
variable creations.

Example of if/then/else

An if _result temporary variable is introduced by the compiler to
hold the result of the if /then/else expression.
let function f(a: int): int =

let var b := if a > O then 1 else -1 in b * 10 end

in ... end

create b variable; create if_result variable

|

/ true \fjlse

if_result := 1 ‘ l if_result := -1

/

b := if_result; return b*10

Example of while loop

// pow2 computes the smallest power of 2 >= limit
let function pow2(limit: int): int =
let var r := 1 in while r < limit do r := r * 2; r end

in ... end

J

J

et ¢

Example of for loop

let function fact(m: int): int =
let var r := 1 in for i := 2 tondor :=r * i; r end

in ... end
create r variable; create i variable

J

J

Q)

r.fr**\+l

return a

Tools at our disposal

LLVM, which we use as a backend in our Tiger compiler, offers
several tools to manipulate basic blocks:

= a function to create a new local variable (we will use this to
create new variables in the entry block);

= a function to create a new basic block (with an optional label,
useful for debugging);

= a function to set the insertion point of the generated
instructions at the end of a given basic block;

= functions to generate branches to exit a basic block.

Control flow is lowered to branches and labels (1/2)

let var a := 0 in print_int(if a then 1 else 2) end
compiles to,
entry:

%a = alloca i32 ; allocate variable a

%if_result = alloca i32 ; allocate temporary

br %body

body:
store i32 0, i32* ja ; var a := 0
%0 = load i32, i32* %a

yal

icmp ne i32 %0, O ; if a (is a <> 0?)

br il %1, label %if_then, label %if_else

Control flow (2/2)

let var a := 0 in print_int(if a then 1 else 2) end

compiles to,

[...]

if_then:
store i32 1, i32* %if_result ; then, store if result 1
br label %if_end

if_else:
store i32 2, i32% Jif_result ; else, store if result 2
br label %if_end

if_end:
%2 = load i32, 132* %if_result ; read if result
call void @__print_int(i32 %2) ; print if result
ret

What about loops?

Question: How would you write the following program in LLVM IR?

let var a := 10 in while a do (a := a - 1; print_int(a)) end

entry:
%a = alloca 132
br %body
body:
store i32 10, i32* %a
br label %while_test
while_test:

%0 = load i32, i32* %a
%1 = icmp ne 132 %0, O

s

s

var a := 10

jump to Jwhile_test

; read a

; 1S *a zero?

br il %1, label %while_body, label %while_end

while_body:
%2 load 132, i32% %a
%3 = sub i32 %2, 1
store i32 %3, i32*x %a
%4 = load i32, i32* %a

; read a
; *a - 1
; write (*a - 1) to a

, read a

call void @__print_int(i32 %4) ; print *a

br label Y%while_test
while_end:

; loop back to test
10

Conclusion

= Code is generated one function at a time.

= For every function, we generate basic blocks.

= Every basic block as a unique entry point, and a unique exit
point (return from function, unconditional jump to another
block, conditional jump towards several blocks).

= Local variables are declared using alloca in the first basic
block (entry block).

= Local variables are accessed through store and load
operations.

= The mem2reg optimization pass will remove all redundant

alloca/store/load operations.

11

